On locally compact groups with invariant means

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shift Invariant Spaces and Shift Preserving Operators on Locally Compact Abelian Groups

We investigate shift invariant subspaces of $L^2(G)$, where $G$ is a locally compact abelian group. We show that every shift invariant space can be decomposed as an orthogonal sum of spaces each of which is generated by a single function whose shifts form a Parseval frame. For a second countable locally compact abelian group $G$ we prove a useful Hilbert space isomorphism, introduce range funct...

متن کامل

On component extensions locally compact abelian groups

Let $pounds$ be the category of locally compact abelian groups and $A,Cin pounds$. In this paper, we define component extensions of $A$ by $C$ and show that the set of all component extensions of $A$ by $C$ forms a subgroup of $Ext(C,A)$ whenever $A$ is a connected group. We establish conditions under which the component extensions split and determine LCA groups which are component projective. ...

متن کامل

Bracket Products on Locally Compact Abelian Groups

We define a new function-valued inner product on L2(G), called ?-bracket product, where G is a locally compact abelian group and ? is a topological isomorphism on G. We investigate the notion of ?-orthogonality, Bessel's Inequality and ?-orthonormal bases with respect to this inner product on L2(G).

متن کامل

Pseudoframe multiresolution structure on abelian locally compact groups

‎Let $G$ be a locally compact abelian group‎. ‎The concept of a generalized multiresolution structure (GMS) in $L^2(G)$ is discussed which is a generalization of GMS in $L^2(mathbb{R})$‎. ‎Basically a GMS in $L^2(G)$ consists of an increasing sequence of closed subspaces of $L^2(G)$ and a pseudoframe of translation type at each level‎. ‎Also‎, ‎the construction of affine frames for $L^2(G)$ bas...

متن کامل

On groups with locally compact asymptotic cones

We show how a recent result of Hrushovsky [6] implies that if an asymptotic cone of a finitely generated group is locally compact, then the group is virtually nilpotent. Let G be a group generated by a finite set X. Then G can be considered as a metric space where dist(g, h) is the length of a shortest word on X ∪X−1 representing g−1h. Let ω be a non-principal ultrafilter on N, i.e. a function ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1968

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1968-0239001-7